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Exercise 2.5.29

Solve Laplace’s equation inside a circle of radius a,

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0,

subject to the boundary condition
u(a, θ) = f(θ).

Solution

Because the Laplace equation is linear and homogeneous, the method of separation of variables
can be applied to solve it. Assume a product solution of the form u(r, θ) = R(r)Θ(θ) and plug it
into the PDE.

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0

1

r

∂

∂r

[
r
∂

∂r
R(r)Θ(θ)

]
+

1

r2
∂2

∂θ2
R(r)Θ(θ) = 0

Θ(θ)

r

d

dr

(
r
dR

dr

)
+
R(r)

r2
d2Θ

dθ2
= 0

Multiply both sides by r2/[R(r)Θ(θ)] in order to separate variables.

r

R(r)

d

dr

(
r
dR

dr

)
+

1

Θ(θ)

d2Θ

dθ2
= 0

r

R(r)

d

dr

(
r
dR

dr

)
= − 1

Θ(θ)

d2Θ

dθ2

The only way a function of r can be equal to a function of θ is if both are equal to a constant λ.

r

R(r)

d

dr

(
r
dR

dr

)
= − 1

Θ(θ)

d2Θ

dθ2
= λ

As a result of separating variables, the PDE has reduced to two ODEs—one in each independent
variable.

r

R

d

dr

(
r
dR

dr

)
= λ

− 1

Θ

d2Θ

dθ2
= λ


Values of λ for which nontrivial solutions to these ODEs and the associated boundary conditions
exist are called eigenvalues, and the solutions themselves are called eigenfunctions. Note that it
doesn’t matter whether the minus sign is grouped with r or θ as long as all eigenvalues are taken
into account.
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Though it would seem the method of separation of variables would fail because the provided
boundary condition is inhomogeneous, there are two others that aren’t listed which are
homogeneous.

u(r, 0) = u(r, 2π)

∂u

∂θ
(r, 0) =

∂u

∂θ
(r, 2π)

These periodic boundary conditions come from the fact that the domain is a disk, and the
solution and its slope in the θ-direction must repeat every 2π radians. Generally, the interval of θ
used is the one that f(θ) is defined over. Mr. Haberman uses −π < θ < π in the textbook, so
that’s what will be used here. The following boundary conditions will be used instead.

u(r,−π) = u(r, π)

∂u

∂θ
(r,−π) =

∂u

∂θ
(r, π)

Substitute the product solution u(r, θ) = R(r)Θ(θ) into them.

u(r,−π) = u(r, π) → R(r)Θ(−π) = R(r)Θ(π) → Θ(−π) = Θ(π)

∂u

∂θ
(r,−π) =

∂u

∂θ
(r, π) → R(r)Θ′(−π) = R(r)Θ′(π) → Θ′(−π) = Θ′(π)

Now solve the ODE for Θ.
Θ′′ = −λΘ

Check to see if there are positive eigenvalues: λ = µ2.

Θ′′ = −µ2Θ

The general solution can be written in terms of sine and cosine.

Θ(θ) = C1 cosµθ + C2 sinµθ

Differentiate it with respect to θ.

Θ′(θ) = µ(−C1 sinµθ + C2 cosµθ)

Apply the boundary conditions to determine C1 and C2.

Θ(−π) = C1 cosµπ − C2 sinµπ = C1 cosµπ + C2 sinµπ = Θ(π)

Θ′(−π) = µ(C1 sinµπ + C2 cosµπ) = µ(−C1 sinµπ + C2 cosµπ) = Θ′(π)

Cancel the terms common to both sides.

−C2 sinµπ = C2 sinµπ

µ(C1 sinµπ) = µ(−C1 sinµπ)

To avoid the trivial solution, we insist that C1 6= 0 and C2 6= 0.

sinµπ = 0

µπ = nπ, n = 1, 2, . . .

µ = n
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There are positive eigenvalues λ = n2, and the eigenfunctions associated with them are

Θ(θ) = C1 cosµθ + C2 sinµθ → Θn(θ) = E cosnθ + F sinnθ.

Using λ = n2, solve the ODE for R now.

r

R

d

dr

(
r
dR

dr

)
= n2

Expand the left side.
r

R
(R′ + rR′′) = n2

Multiply both sides by R and bring all terms to the left side.

r2R′′ + rR′ − n2R = 0

This is an equidimensional ODE, so it has solutions of the form R(r) = rm.

R = rm → R′ = mrm−1 → R′′ = m(m− 1)rm−2

Substitute these formulas into the ODE and solve the resulting equation for m.

r2m(m− 1)rm−2 + rmrm−1 − 9n2rm = 0

m(m− 1)rm +mrm − n2rm = 0

m(m− 1) +m− n2 = 0

m2 − n2 = 0

(m+ n)(m− n) = 0

m = {−n, n}

Two solutions to the ODE are R = r−n and R = rn. By the principle of superposition, the
general solution for R is a linear combination of these two.

R(r) = Ar−n +Brn

In order for the solution to remain finite as r → 0, set A = 0.

R(r) = Brn

Now check to see if zero is an eigenvalue: λ = 0.

Θ′′ = 0

The general solution is a straight line.

Θ(θ) = C3θ + C4

Apply the boundary conditions here to determine C3 and C4.

Θ(−π) = −C3π + C4 = C3π + C4 = Θ(π)

Θ′(−π) = C3 = C3 = Θ′(π)
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C4 cancels from the first equation, leaving −C3π = C3π. Only C3 = 0 satisfies this equation, and
C4 remains arbitrary.

Θ(θ) = C4

This is not the trivial solution, so zero is an eigenvalue. The eigenfunction associated with it is a
constant. Now solve the ODE for R with λ = 0.

r

R

d

dr

(
r
dR

dr

)
= 0

Multiply both sides by R/r.
d

dr

(
r
dR

dr

)
= 0

Integrate both sides with respect to r.

r
dR

dr
= D1

Divide both sides by r.
dR

dr
=
D1

r

Integrate both sides with respect to r once more.

R(r) = D1 ln r +D2

In order for the solution to remain finite as r → 0, set D1 = 0.

R(r) = D2

Check to see if there are negative eigenvalues: λ = −γ2.

Θ′′ = γ2Θ

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

Θ(θ) = C5 cosh γθ + C6 sinh γθ

Differentiate it with respect to θ.

Θ′(θ) = γ(C5 sinh γθ + C6 cosh γθ)

Apply the two boundary conditions to determine C5 and C6.

Θ(−π) = C5 cosh γπ − C6 sinh γπ = C5 cosh γπ + C6 sinh γπ = Θ(π)

Θ′(−π) = γ(−C5 sinh γπ + C6 cosh γπ) = γ(C5 sinh γπ + C6 cosh γπ) = Θ′(π)

Cancel the terms common to both sides in each equation.

−C6 sinh γπ = C6 sinh γπ

γ(−C5 sinh γπ) = γ(C5 sinh γπ)

There are no nonzero values of γ that can satisfy these equations, which means the only way they
are is if C5 = 0 and C6 = 0.

Θ(θ) = 0
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The trivial solution is obtained, so there are no negative eigenvalues. According to the principle
of superposition, the general solution to the PDE is a linear combination of the eigenfunctions
u = Rn(r)Θn(θ) over all the eigenvalues.

u(r, θ) = B0 +
∞∑
n=1

Bnr
n(En cosnθ + Fn sinnθ)

The aim now is to use the prescribed boundary condition to determine all of the coefficients.

u(a, θ) = B0 +
∞∑
n=1

Bna
n(En cosnθ + Fn sinnθ) = f(θ) (1)

To get B0, integrate both sides with respect to θ from −π to π.

ˆ π

−π

[
B0 +

∞∑
n=1

Bna
n(En cosnθ + Fn sinnθ)

]
dθ =

ˆ π

−π
f(θ) dθ

Split up the integral on the left and bring the constants in front.

B0

ˆ π

−π
dθ︸ ︷︷ ︸

= 2π

+

∞∑
n=1

Bna
n

(
En

ˆ π

−π
cosnθ dθ︸ ︷︷ ︸
= 0

+Fn

ˆ π

−π
sinnθ dθ︸ ︷︷ ︸
= 0

)
=

ˆ π

−π
f(θ) dθ

Evaluate the integrals.

B0(2π) =

ˆ π

−π
f(θ) dθ

Therefore,

B0 =
1

2π

ˆ π

−π
f(θ) dθ

To get the next coefficient, multiply both sides of equation (1) by cos pθ, where p is an integer

B0 cos pθ +

∞∑
n=1

Bna
n(En cosnθ cos pθ + Fn sinnθ cos pθ) = f(θ) cos pθ

and then integrate both sides with respect to θ from −π to π.

ˆ π

−π

[
B0 cos pθ +

∞∑
n=1

Bna
n(En cosnθ cos pθ + Fn sinnθ cos pθ)

]
dθ =

ˆ π

−π
f(θ) cos pθ dθ

Split up the integral on the left and bring the constants in front.

B0

ˆ π

−π
cos pθ dθ︸ ︷︷ ︸
= 0

+
∞∑
n=1

Bna
n

(
En

ˆ π

−π
cosnθ cos pθ dθ + Fn

ˆ π

−π
sinnθ cos pθ dθ︸ ︷︷ ︸

= 0

)
=

ˆ π

−π
f(θ) cos pθ dθ

Because the sine and cosine functions are orthogonal, the third integral on the left is zero. The
cosine functions are orthogonal with one another, so the second integral is zero if n 6= p. Only if
n = p does the integral yield a nonzero result.

Bna
n

(
En

ˆ π

−π
cos2 nθ dθ

)
=

ˆ π

−π
f(θ) cosnθ dθ

www.stemjock.com



Haberman Applied PDEs 5e: Section 2.5 - Exercise 2.5.29 Page 6 of 6

Evaluate the integral.

anBnEn(π) =

ˆ π

−π
f(θ) cosnθ dθ

Therefore,

BnEn =
1

πan

ˆ π

−π
f(θ) cosnθ dθ.

To get the final coefficient, multiply both sides of equation (1) by sin pθ, where p is an integer

B0 sin pθ +

∞∑
n=1

Bna
n(En cosnθ sin pθ + Fn sinnθ sin pθ) = f(θ) sin pθ

and then integrate both sides with respect to θ from −π to π.

ˆ π

−π

[
B0 sin pθ +

∞∑
n=1

Bna
n(En cosnθ sin pθ + Fn sinnθ sin pθ)

]
dθ =

ˆ π

−π
f(θ) sin pθ dθ

Split up the integral on the left and bring the constants in front.

B0

ˆ π

−π
sin pθ dθ︸ ︷︷ ︸
= 0

+
∞∑
n=1

Bna
n

(
En

ˆ π

−π
cosnθ sin pθ dθ︸ ︷︷ ︸

= 0

+Fn

ˆ π

−π
sinnθ sin pθ dθ

)
=

ˆ π

−π
f(θ) sin pθ dθ

Because the sine and cosine functions are orthogonal, the second integral on the left is zero. The
sine functions are orthogonal with one another, so the third integral is zero if n 6= p. Only if n = p
does the integral yield a nonzero result.

Bna
n

(
Fn

ˆ π

−π
sin2 nθ dθ

)
=

ˆ π

−π
f(θ) sinnθ dθ

Evaluate the integral.

anBnFn(π) =

ˆ π

−π
f(θ) sinnθ dθ

Therefore,

BnFn =
1

πan

ˆ π

−π
f(θ) sinnθ dθ.

With these boxed formulas for the coefficients, the general solution for the PDE is better written
as

u(r, θ) = B0 +

∞∑
n=1

rn(BnEn cosnθ +BnFn sinnθ).
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